Design-based difference-in-means estimator
Source:R/estimatr_difference_in_means.R
difference_in_means.Rd
Difference-in-means estimators that selects the appropriate point estimate, standard errors, and degrees of freedom for a variety of designs: unit randomized, cluster randomized, block randomized, block-cluster randomized, matched-pairs, and matched-pair cluster randomized designs
Usage
difference_in_means(
formula,
data,
blocks,
clusters,
weights,
subset,
se_type = c("default", "none"),
condition1 = NULL,
condition2 = NULL,
ci = TRUE,
alpha = 0.05
)
Arguments
- formula
an object of class formula, as in
lm
, such asY ~ Z
with only one variable on the right-hand side, the treatment.- data
A
data.frame
.- blocks
An optional bare (unquoted) name of the block variable. Use for blocked designs only.
- clusters
An optional bare (unquoted) name of the variable that corresponds to the clusters in the data; used for cluster randomized designs. For blocked designs, clusters must nest within blocks.
- weights
the bare (unquoted) names of the weights variable in the supplied data.
- subset
An optional bare (unquoted) expression specifying a subset of observations to be used.
- se_type
An optional string that can be one of
c("default", "none")
. If "default" (the default), it will use the default standard error estimator for the design, and if "none" then standard errors will not be computed which may speed up run time if only the point estimate is required.- condition1
value in the treatment vector of the condition to be the control. Effects are estimated with
condition1
as the control andcondition2
as the treatment. If unspecified,condition1
is the "first" condition andcondition2
is the "second" according to levels if the treatment is a factor or according to a sortif it is a numeric or character variable (i.e if unspecified and the treatment is 0s and 1s,condition1
will by default be 0 andcondition2
will be 1). See the examples for more.- condition2
value in the treatment vector of the condition to be the treatment. See
condition1
.- ci
logical. Whether to compute and return p-values and confidence intervals, TRUE by default.
- alpha
The significance level, 0.05 by default.
Value
Returns an object of class "difference_in_means"
.
The post-estimation commands functions summary
and tidy
return results in a data.frame
. To get useful data out of the return,
you can use these data frames, you can use the resulting list directly, or
you can use the generic accessor functions coef
and
confint
.
An object of class "difference_in_means"
is a list containing at
least the following components:
- coefficients
the estimated difference in means
- std.error
the estimated standard error
- statistic
the t-statistic
- df
the estimated degrees of freedom
- p.value
the p-value from a two-sided t-test using
coefficients
,std.error
, anddf
- conf.low
the lower bound of the
1 - alpha
percent confidence interval- conf.high
the upper bound of the
1 - alpha
percent confidence interval- term
a character vector of coefficient names
- alpha
the significance level specified by the user
- N
the number of observations used
- outcome
the name of the outcome variable
- design
the name of the design learned from the arguments passed
Details
This function implements a difference-in-means estimator, with support for blocked, clustered, matched-pairs, block-clustered, and matched-pair clustered designs. One specifies their design by passing the blocks and clusters in their data and this function chooses which estimator is most appropriate.
If you pass only blocks
, if all blocks are of size two, we will
infer that the design is a matched-pairs design. If they are all size four
or larger, we will infer that it is a regular blocked design. If you pass
both blocks
and clusters
, we will similarly
infer whether it is a matched-pairs clustered design or a block-clustered
design the number of clusters per block. If the user passes only
clusters
, we will infer that the design was cluster-randomized. If
the user specifies neither the blocks
nor the clusters
,
a regular Welch's t-test will be performed.
Importantly, if the user specifies weights, the estimation is handed off
to lm_robust
with the appropriate robust standard errors
as weighted difference-in-means estimators are not implemented here.
More details of the about each of the estimators can be found in the
mathematical notes.
References
Gerber, Alan S, and Donald P Green. 2012. Field Experiments: Design, Analysis, and Interpretation. New York: W.W. Norton.
Imai, Kosuke, Gary King, Clayton Nall. 2009. "The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation." Statistical Science 24 (1). Institute of Mathematical Statistics: 29-53. doi:10.1214/08-STS274 .
Examples
library(fabricatr)
library(randomizr)
# Get appropriate standard errors for unit-randomized designs
# ----------
# 1. Unit randomized
# ----------
dat <- fabricate(
N = 100,
Y = rnorm(100),
Z_comp = complete_ra(N, prob = 0.4),
)
table(dat$Z_comp)
#>
#> 0 1
#> 60 40
difference_in_means(Y ~ Z_comp, data = dat)
#> Design: Standard
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> Z_comp 0.02822768 0.2128302 0.13263 0.8947893 -0.3947386 0.4511939 87.83788
# ----------
# 2. Cluster randomized
# ----------
# Accurates estimates and standard errors for clustered designs
dat$clust <- sample(20, size = nrow(dat), replace = TRUE)
dat$Z_clust <- cluster_ra(dat$clust, prob = 0.6)
table(dat$Z_clust, dat$clust)
#>
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#> 0 5 0 4 0 5 0 0 2 7 0 0 0 4 0 0 0 0 0 5 3
#> 1 0 5 0 5 0 7 5 0 0 7 6 6 0 7 5 5 3 4 0 0
summary(difference_in_means(Y ~ Z_clust, clusters = clust, data = dat))
#> $coefficients
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
#> Z_clust -0.01514775 0.2606826 -0.05810801 0.9545717 -0.5799884 0.5496929
#> DF
#> Z_clust 12.63249
#>
#> $design
#> [1] "Clustered"
#>
# ----------
# 3. Block randomized
# ----------
dat$block <- rep(1:10, each = 10)
dat$Z_block <- block_ra(dat$block, prob = 0.5)
table(dat$Z_block, dat$block)
#>
#> 1 2 3 4 5 6 7 8 9 10
#> 0 5 5 5 5 5 5 5 5 5 5
#> 1 5 5 5 5 5 5 5 5 5 5
difference_in_means(Y ~ Z_block, blocks = block, data = dat)
#> Design: Blocked
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> Z_block -0.08359831 0.2077124 -0.4024715 0.6884105 -0.4969591 0.3297625 80
# ----------
# 4. Block cluster randomized
# ----------
# Learns this design if there are two clusters per block
dat$small_clust <- rep(1:50, each = 2)
dat$big_blocks <- rep(1:5, each = 10)
dat$Z_blcl <- block_and_cluster_ra(
blocks = dat$big_blocks,
clusters = dat$small_clust
)
difference_in_means(
Y ~ Z_blcl,
blocks = big_blocks,
clusters = small_clust,
data = dat
)
#> Design: Block-clustered
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> Z_blcl 0.09845335 0.2098115 0.4692467 0.6414411 -0.3255915 0.5224982 40
# ----------
# 5. Matched-pairs
# ----------
# Matched-pair estimates and standard errors are also accurate
# Specified same as blocked design, function learns that
# it is matched pair from size of blocks!
dat$pairs <- rep(1:50, each = 2)
dat$Z_pairs <- block_ra(dat$pairs, prob = 0.5)
table(dat$pairs, dat$Z_pairs)
#>
#> 0 1
#> 1 1 1
#> 2 1 1
#> 3 1 1
#> 4 1 1
#> 5 1 1
#> 6 1 1
#> 7 1 1
#> 8 1 1
#> 9 1 1
#> 10 1 1
#> 11 1 1
#> 12 1 1
#> 13 1 1
#> 14 1 1
#> 15 1 1
#> 16 1 1
#> 17 1 1
#> 18 1 1
#> 19 1 1
#> 20 1 1
#> 21 1 1
#> 22 1 1
#> 23 1 1
#> 24 1 1
#> 25 1 1
#> 26 1 1
#> 27 1 1
#> 28 1 1
#> 29 1 1
#> 30 1 1
#> 31 1 1
#> 32 1 1
#> 33 1 1
#> 34 1 1
#> 35 1 1
#> 36 1 1
#> 37 1 1
#> 38 1 1
#> 39 1 1
#> 40 1 1
#> 41 1 1
#> 42 1 1
#> 43 1 1
#> 44 1 1
#> 45 1 1
#> 46 1 1
#> 47 1 1
#> 48 1 1
#> 49 1 1
#> 50 1 1
difference_in_means(Y ~ Z_pairs, blocks = pairs, data = dat)
#> Design: Matched-pair
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> Z_pairs -0.09532749 0.212814 -0.4479381 0.6561722 -0.5229932 0.3323383 49
# ----------
# 6. Matched-pair cluster randomized
# ----------
# Learns this design if there are two clusters per block
dat$small_clust <- rep(1:50, each = 2)
dat$cluster_pairs <- rep(1:25, each = 4)
table(dat$cluster_pairs, dat$small_clust)
#>
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#> 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 3 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 4 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 5 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 6 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 7 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
#> 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
#> 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0
#> 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0
#> 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0
#> 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0
#> 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
#> 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>
#> 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#> 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 15 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 16 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 17 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 18 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 19 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
#> 20 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
#> 21 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0
#> 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0
#> 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0
#> 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0
#> 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
dat$Z_mpcl <- block_and_cluster_ra(
blocks = dat$cluster_pairs,
clusters = dat$small_clust
)
difference_in_means(
Y ~ Z_mpcl,
blocks = cluster_pairs,
clusters = small_clust,
data = dat
)
#> Design: Matched-pair clustered
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> Z_mpcl 0.1760208 0.2335122 0.7537972 0.4583032 -0.3059246 0.6579662 24
# ----------
# Other examples
# ----------
# Also works with multi-valued treatments if users specify
# comparison of interest
dat$Z_multi <- simple_ra(
nrow(dat),
conditions = c("Treatment 2", "Treatment 1", "Control"),
prob_each = c(0.4, 0.4, 0.2)
)
# Only need to specify which condition is treated `condition2` and
# which is control `condition1`
difference_in_means(
Y ~ Z_multi,
condition1 = "Treatment 2",
condition2 = "Control",
data = dat
)
#> Design: Standard
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
#> Z_multiControl -0.36965 0.3302006 -1.119471 0.2731941 -1.04845 0.3091496
#> DF
#> Z_multiControl 25.95082
difference_in_means(
Y ~ Z_multi,
condition1 = "Treatment 1",
condition2 = "Control",
data = dat
)
#> Design: Standard
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
#> Z_multiControl -0.04375527 0.330429 -0.1324196 0.8956773 -0.7231372 0.6356266
#> DF
#> Z_multiControl 25.86285
# Specifying weights will result in estimation via lm_robust()
dat$w <- runif(nrow(dat))
difference_in_means(Y ~ Z_comp, weights = w, data = dat)
#> Design: Standard (weighted)
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> Z_comp -0.1020411 0.2483971 -0.4107981 0.6821174 -0.5949771 0.390895 98
lm_robust(Y ~ Z_comp, weights = w, data = dat)
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> (Intercept) 0.2047595 0.1670486 1.2257484 0.2232309 -0.1267430 0.5362621 98
#> Z_comp -0.1020411 0.2483971 -0.4107981 0.6821174 -0.5949771 0.3908950 98