Absorbing Fixed Effects with estimatr
Source:vignettes/absorbing-fixed-effects.Rmd
absorbing-fixed-effects.Rmd
Whether analyzing a block-randomized experiment or adding fixed
effects for a panel model, absorbing group means can speed up estimation
time. The fixed_effects
argument in both
lm_robust
and iv_robust
allows you to do just
that, although the speed gains are greatest with “HC1” standard errors.
Specifying fixed effects is really simple.
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## hp -0.02403883 0.01503818 -1.598521 0.1211523 -0.05484314 0.006765475 28
lmr_out$fixed_effects
## cyl4 cyl6 cyl8
## 28.65012 22.68246 20.12927
Before proceeding, three quick notes:
- Most of the speed gains occur when estimating “HC1” robust standard errors, or “stata” standard errors when there is clustering. This is because most of the speed gains come from avoiding inverting a large matrix of group dummies, but this step is still necessary for “HC2”, “HC3”, and “CR2” standard errors.
- While you can specify multiple sets of fixed effects, such as
fixed_effects = ~ year + country
, please ensure that your model is well-specified if you do so. If there are dependencies or overlapping groups across multiple sets of fixed effects, we cannot guarantee the correct degrees of freedom. - For now, weighted “CR2” estimation is not possible with fixed_effects.
Speed gains
In general, our speed gains will be greatest as the number of groups/fixed effects is large relative to the number of observations. Imagine we have 300 matched-pairs in an experiment.
# Load packages for comparison
library(microbenchmark)
library(sandwich)
library(lmtest)
# Create matched-pairs dataset using fabricatr
set.seed(40)
library(fabricatr)
dat <- fabricate(
blocks = add_level(N = 300),
indiv = add_level(N = 2, z = sample(0:1), y = rnorm(N) + z)
)
head(dat)
## blocks indiv z y
## 1 001 001 1 1.4961828
## 2 001 002 0 -0.8595843
## 3 002 003 1 0.1709400
## 4 002 004 0 -0.3215731
## 5 003 005 1 -0.3037704
## 6 003 006 0 -1.4214866
# With HC2
microbenchmark(
`base + sandwich` = {
lo <- lm(y ~ z + factor(blocks), dat)
coeftest(lo, vcov = vcovHC(lo, type = "HC2"))
},
`lm_robust` = lm_robust(y ~ z + factor(blocks), dat),
`lm_robust + fes` = lm_robust(y ~ z, data = dat, fixed_effects = ~ blocks),
times = 50
)
## Warning in microbenchmark(`base + sandwich` = {: less accurate nanosecond times
## to avoid potential integer overflows
## Unit: milliseconds
## expr min lq mean median uq max
## base + sandwich 151.71837 195.69702 225.10105 206.95414 241.23846 376.5009
## lm_robust 37.65641 50.56202 59.74602 59.26452 62.82069 147.2012
## lm_robust + fes 23.87373 29.01107 41.31958 33.67597 39.98947 151.8065
## neval cld
## 50 a
## 50 b
## 50 c
Speed gains are considerably greater with HC1 standard errors. This is because we need to get the hat matrix for HC2, HC3, and CR2 standard errors, which requires inverting that large matrix of dummies we previously avoided doing. HC0, HC1, CR0, and CRstata standard errors do not require this inversion.
# With HC1
microbenchmark(
`base + sandwich` = {
lo <- lm(y ~ z + factor(blocks), dat)
coeftest(lo, vcov = vcovHC(lo, type = "HC1"))
},
`lm_robust` = lm_robust(
y ~ z + factor(blocks),
dat,
se_type = "HC1"
),
`lm_robust + fes` = lm_robust(
y ~ z,
data = dat,
fixed_effects = ~ blocks,
se_type = "HC1"
),
times = 50
)
## Unit: milliseconds
## expr min lq mean median uq max
## base + sandwich 176.54379 204.912342 223.792357 217.461376 228.012808 476.0788
## lm_robust 35.70551 46.499494 60.953536 52.558392 58.119140 244.0607
## lm_robust + fes 3.17586 3.972449 9.226273 4.962456 7.349537 166.5688
## neval cld
## 50 a
## 50 b
## 50 c