Absorbing Fixed Effects with estimatr

Whether analyzing a block-randomized experiment or adding fixed effects for a panel model, absorbing group means can speed up estimation time. The fixed_effects argument in both lm_robust and iv_robust allows you to do just that, although the speed gains are greatest with “HC1” standard errors. Specifying fixed effects is really simple.

library(estimatr)
lmr_out <- lm_robust(mpg ~ hp, data = mtcars, fixed_effects = ~ cyl)
lmr_out
##       Estimate Std. Error   t value  Pr(>|t|)    CI Lower    CI Upper DF
## hp -0.02403883 0.01503818 -1.598521 0.1211523 -0.05484314 0.006765475 28
lmr_out$fixed_effects
##     cyl4     cyl6     cyl8 
## 28.65012 22.68246 20.12927

Before proceeding, three quick notes:

  • Most of the speed gains occur when estimating “HC1” robust standard errors, or “stata” standard errors when there is clustering. This is because most of the speed gains come from avoiding inverting a large matrix of group dummies, but this step is still necessary for “HC2”, “HC3”, and “CR2” standard errors.
  • While you can specify multiple sets of fixed effects, such as fixed_effects = ~ year + country, please ensure that your model is well-specified if you do so. If there are dependencies or overlapping groups across multiple sets of fixed effects, we cannot guarantee the correct degrees of freedom.
  • For now, weighted “CR2” estimation is not possible with fixed_effects.

Speed gains

In general, our speed gains will be greatest as the number of groups/fixed effects is large relative to the number of observations. Imagine we have 300 matched-pairs in an experiment.

# Load packages for comparison
library(microbenchmark)
library(sandwich)
library(lmtest)

# Create matched-pairs dataset using fabricatr
set.seed(40)
library(fabricatr)
dat <- fabricate(
  blocks = add_level(N = 300),
  indiv = add_level(N = 2, z = sample(0:1), y = rnorm(N) + z)
)
head(dat)
##   blocks indiv z          y
## 1    001   001 1  1.4961828
## 2    001   002 0 -0.8595843
## 3    002   003 1  0.1709400
## 4    002   004 0 -0.3215731
## 5    003   005 1 -0.3037704
## 6    003   006 0 -1.4214866
# With HC2
microbenchmark(
  `base + sandwich` = {
    lo <- lm(y ~ z + factor(blocks), dat)
    coeftest(lo, vcov = vcovHC(lo, type = "HC2"))
  },
  `lm_robust` = lm_robust(y ~ z + factor(blocks), dat),
  `lm_robust + fes` = lm_robust(y ~ z, data = dat, fixed_effects = ~ blocks),
  times = 50
)
## Unit: milliseconds
##             expr       min        lq      mean    median        uq       max
##  base + sandwich 181.18456 184.22188 186.67973 185.07639 186.97122 241.06239
##        lm_robust  68.71929  69.40851  71.12332  70.46418  72.60939  77.49915
##  lm_robust + fes  40.67144  41.20503  43.75106  41.66364  43.34586 112.15371
##  neval
##     50
##     50
##     50

Speed gains are considerably greater with HC1 standard errors. This is because we need to get the hat matrix for HC2, HC3, and CR2 standard errors, which requires inverting that large matrix of dummies we previously avoided doing. HC0, HC1, CR0, and CRstata standard errors do not require this inversion.

# With HC1
microbenchmark(
  `base + sandwich` = {
    lo <- lm(y ~ z + factor(blocks), dat)
    coeftest(lo, vcov = vcovHC(lo, type = "HC1"))
  },
  `lm_robust` = lm_robust(
    y ~ z + factor(blocks),
    dat,
    se_type = "HC1"
  ),
  `lm_robust + fes` = lm_robust(
    y ~ z, 
    data = dat,
    fixed_effects = ~ blocks,
    se_type = "HC1"
  ),
  times = 50
)
## Unit: milliseconds
##             expr        min         lq       mean    median         uq
##  base + sandwich 179.744034 184.111635 187.889428 184.96667 187.616992
##        lm_robust  57.329937  58.233107  59.513979  58.75043  61.058160
##  lm_robust + fes   5.815724   6.403127   6.923703   6.62324   6.854286
##        max neval
##  243.75507    50
##   65.07088    50
##   10.03456    50