fabricate helps you simulate a dataset before you collect it. You can
either start with your own data and add simulated variables to it (by passing
data to fabricate()) or start from scratch by defining
N. Create hierarchical data with multiple levels of data such as
citizens within cities within states using add_level() or modify
existing hierarchical data using modify_level(). You can use any R
function to create each variable. Use cross_levels() and
link_levels() to make more complex designs such as panel or
cross-classified data.
Usage
fabricate(..., data = NULL, N = NULL, ID_label = NULL)
add_level(N = NULL, ..., nest = TRUE)
modify_level(..., by = NULL)
nest_level(N = NULL, ...)Arguments
- ...
Variable or level-generating arguments, such as
my_var = rnorm(N). Forfabricate, you may also passadd_level()ormodify_level()arguments, which define a level of a multi-level dataset. See examples.- data
(optional) user-provided data that forms the basis of the fabrication, e.g. you can add variables to existing data. Provide either
Nordata(Nis the number of rows of the data ifdatais provided). IfdataandNare not provided, fabricatr will try to interpret the first un-named argument as eitherdataorNbased on type.- N
(optional) number of units to draw. If provided as
fabricate(N = 5), this determines the number of units in the single-level data. If provided inadd_level, e.g.fabricate(cities = add_level(N = 5)),Ndetermines the number of units in a specific level of a hierarchical dataset.- ID_label
(optional) variable name for ID variable, e.g. citizen_ID. Set to NA to suppress the creation of an ID variable.
- nest
(Default TRUE) Boolean determining whether data in an
add_level()call will be nested under the current working data frame or create a separate hierarchy of levels. See our vignette for cross-classified, non-nested data for details.- by
(optional) quoted name of variable
modify_leveluses to split-modify-combine data by.
Details
We also provide several built-in options to easily create variables, including
draw_binary, draw_count, draw_likert,
and intra-cluster correlated variables draw_binary_icc and
draw_normal_icc
Examples
# Draw a single-level dataset with a covariate
building_df <- fabricate(
N = 100,
height_ft = runif(N, 300, 800)
)
head(building_df)
#> ID height_ft
#> 1 001 695.7237
#> 2 002 365.3841
#> 3 003 556.6784
#> 4 004 540.1588
#> 5 005 673.2184
#> 6 006 457.7906
# Start with existing data instead
building_modified <- fabricate(
data = building_df,
rent = rnorm(N, mean = height_ft * 100, sd = height_ft * 30)
)
# Draw a two-level hierarchical dataset
# containing cities within regions
multi_level_df <- fabricate(
regions = add_level(N = 5),
cities = add_level(N = 2, pollution = rnorm(N, mean = 5)))
head(multi_level_df)
#> regions cities pollution
#> 1 1 01 6.919135
#> 2 1 02 5.075530
#> 3 2 03 5.267752
#> 4 2 04 5.436291
#> 5 3 05 6.209749
#> 6 3 06 3.746944
# Start with existing data and add a nested level:
company_df <- fabricate(
data = building_df,
company_id = add_level(N=10, is_headquarters = sample(c(0, 1), N, replace=TRUE))
)
# Start with existing data and add variables to hierarchical data
# at levels which are already present in the existing data.
# Note: do not provide N when adding variables to an existing level
fabricate(
data = multi_level_df,
regions = modify_level(watershed = sample(c(0, 1), N, replace = TRUE)),
cities = modify_level(runoff = rnorm(N))
)
#> regions cities pollution watershed runoff
#> 1 1 01 6.919135 0 0.45356334
#> 2 1 02 5.075530 0 -0.48962671
#> 3 2 03 5.267752 1 -0.66608550
#> 4 2 04 5.436291 0 -1.08965423
#> 5 3 05 6.209749 1 -1.04090695
#> 6 3 06 3.746944 0 0.50160668
#> 7 4 07 6.765029 0 0.04135376
#> 8 4 08 4.840678 1 -0.05308168
#> 9 5 09 5.898874 0 -1.52739908
#> 10 5 10 4.295005 0 -0.16356852
# fabricatr can add variables that are higher-level summaries of lower-level
# variables via a split-modify-combine logic and the \code{by} argument
multi_level_df <-
fabricate(
regions = add_level(N = 5, elevation = rnorm(N)),
cities = add_level(N = 2, pollution = rnorm(N, mean = 5)),
cities = modify_level(by = "regions", regional_pollution = mean(pollution))
)
# fabricatr can also make panel or cross-classified data. For more
# information about syntax for this functionality please read our vignette
# or check documentation for \code{link_levels}:
cross_classified <- fabricate(
primary_schools = add_level(N = 50, ps_quality = runif(N, 0, 10)),
secondary_schools = add_level(N = 100, ss_quality = runif(N, 0, 10), nest=FALSE),
students = link_levels(N = 2000,
by = join_using(ps_quality, ss_quality, rho = 0.5),
student_quality = ps_quality + 3*ss_quality + rnorm(N)))