Linear Hypothesis for Ordinary Least Squares with Robust Standard Errors
Source:R/estimatr_lh_robust.R
lh_robust.Rd
This function fits a linear model with robust standard errors and performs linear hypothesis test.
Arguments
- ...
Other arguments to be passed to
lm_robust
- data
A
data.frame
- linear_hypothesis
A character string or a matrix specifying combination, to be passed to the hypothesis.matrix argument of car::linearHypothesis See
linearHypothesis
for more details.
Value
An object of class "lh_robust"
containing the two following components:
- lm_robust
an object as returned by
lm_robust
.- lh
A data frame with most of its columns pulled from
linearHypothesis
' output.
The only analyis directly performed by lh_robust
is a t-test
for the null hypothesis of no effects of the linear combination of coefficients as specified by the user.
All other output components are either extracted from linearHypothesis
or lm_robust
.
The original output returned by linearHypothesis
is added as an attribute under the "linear_hypothesis"
attribute.
Details
This function is a wrapper for lm_robust
and for
linearHypothesis
. It first runs lm_robust
and
next passes "lm_robust"
object as an argument to linearHypothesis
.
Examples
library(fabricatr)
dat <- fabricate(
N = 40,
y = rpois(N, lambda = 4),
x = rnorm(N),
z = rbinom(N, 1, prob = 0.4),
clusterID = sample(1:4, 40, replace = TRUE)
)
# Default variance estimator is HC2 robust standard errors
lhro <- lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0")
#> Loading required namespace: car
# The linear hypothesis argument can be specified equivalently as:
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z = 2x")
#> $lm_robust
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
#> (Intercept) 4.4094685 0.4557957 9.674221 1.122813e-11 3.4859387 5.3329984
#> x 0.3619881 0.3264857 1.108741 2.746970e-01 -0.2995348 1.0235109
#> z -0.9191800 0.6702807 -1.371336 1.785304e-01 -2.2772976 0.4389376
#> DF
#> (Intercept) 37
#> x 37
#> z 37
#>
#> $lh
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> z = 2x -1.643 0.8839 -1.859 0.07101 -3.434 0.1479 37
#>
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "2*x +1*z")
#> $lm_robust
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
#> (Intercept) 4.4094685 0.4557957 9.674221 1.122813e-11 3.4859387 5.3329984
#> x 0.3619881 0.3264857 1.108741 2.746970e-01 -0.2995348 1.0235109
#> z -0.9191800 0.6702807 -1.371336 1.785304e-01 -2.2772976 0.4389376
#> DF
#> (Intercept) 37
#> x 37
#> z 37
#>
#> $lh
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> 2*x +1*z -0.1952 0.9849 -0.1982 0.844 -2.191 1.8 37
#>
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0")
#> $lm_robust
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
#> (Intercept) 4.4094685 0.4557957 9.674221 1.122813e-11 3.4859387 5.3329984
#> x 0.3619881 0.3264857 1.108741 2.746970e-01 -0.2995348 1.0235109
#> z -0.9191800 0.6702807 -1.371336 1.785304e-01 -2.2772976 0.4389376
#> DF
#> (Intercept) 37
#> x 37
#> z 37
#>
#> $lh
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> z + 2x = 0 -0.1952 0.9849 -0.1982 0.844 -2.191 1.8 37
#>
# Also recovers other sorts of standard erorrs just as specified in \code{\link{lm_robust}}
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0", se_type = "classical")
#> $lm_robust
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
#> (Intercept) 4.4094685 0.4426777 9.9608997 5.104664e-12 3.5125182 5.3064188
#> x 0.3619881 0.3623107 0.9991094 3.242313e-01 -0.3721232 1.0960993
#> z -0.9191800 0.6992058 -1.3146057 1.967333e-01 -2.3359056 0.4975456
#> DF
#> (Intercept) 37
#> x 37
#> z 37
#>
#> $lh
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> z + 2x = 0 -0.1952 0.9746 -0.2003 0.8424 -2.17 1.78 37
#>
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0", se_type = "HC1")
#> $lm_robust
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper
#> (Intercept) 4.4094685 0.4575107 9.637957 1.241489e-11 3.4824638 5.3364733
#> x 0.3619881 0.3218063 1.124863 2.678914e-01 -0.2900534 1.0140295
#> z -0.9191800 0.6715469 -1.368750 1.793307e-01 -2.2798633 0.4415034
#> DF
#> (Intercept) 37
#> x 37
#> z 37
#>
#> $lh
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> z + 2x = 0 -0.1952 0.9848 -0.1982 0.844 -2.191 1.8 37
#>
# Can tidy() main output and subcomponents in to a data.frame
lhro <- lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0")
tidy(lhro )
#> term estimate std.error statistic p.value conf.low conf.high
#> 1 (Intercept) 4.4094685 0.4557957 9.674221 1.122813e-11 3.4859387 5.3329984
#> 2 x 0.3619881 0.3264857 1.108741 2.746970e-01 -0.2995348 1.0235109
#> 3 z -0.9191800 0.6702807 -1.371336 1.785304e-01 -2.2772976 0.4389376
#> 4 z + 2x = 0 -0.1952039 0.9848583 -0.198205 8.439697e-01 -2.1907164 1.8003086
#> df outcome
#> 1 37 y
#> 2 37 y
#> 3 37 y
#> 4 37 y
tidy(lhro$lm_robust)
#> term estimate std.error statistic p.value conf.low conf.high
#> 1 (Intercept) 4.4094685 0.4557957 9.674221 1.122813e-11 3.4859387 5.3329984
#> 2 x 0.3619881 0.3264857 1.108741 2.746970e-01 -0.2995348 1.0235109
#> 3 z -0.9191800 0.6702807 -1.371336 1.785304e-01 -2.2772976 0.4389376
#> df outcome
#> 1 37 y
#> 2 37 y
#> 3 37 y
tidy(lhro$lh)
#> term estimate std.error statistic p.value conf.low conf.high df
#> 1 z + 2x = 0 -0.1952039 0.9848583 -0.198205 0.8439697 -2.190716 1.800309 37
#> outcome
#> 1 y
# Can use summary() to get more statistics on the main output and subcomponents.
summary(lhro)
#> $lm_robust
#>
#> Call:
#> lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0")
#>
#> Standard error type: HC2
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> (Intercept) 4.4095 0.4558 9.674 1.123e-11 3.4859 5.3330 37
#> x 0.3620 0.3265 1.109 2.747e-01 -0.2995 1.0235 37
#> z -0.9192 0.6703 -1.371 1.785e-01 -2.2773 0.4389 37
#>
#> Multiple R-squared: 0.06496 , Adjusted R-squared: 0.01442
#> F-statistic: 1.739 on 2 and 37 DF, p-value: 0.1898
#>
#> $lh
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> z + 2x = 0 -0.1952 0.9849 -0.1982 0.844 -2.191 1.8 37
#>
summary(lhro$lm_robust)
#>
#> Call:
#> lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0")
#>
#> Standard error type: HC2
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> (Intercept) 4.4095 0.4558 9.674 1.123e-11 3.4859 5.3330 37
#> x 0.3620 0.3265 1.109 2.747e-01 -0.2995 1.0235 37
#> z -0.9192 0.6703 -1.371 1.785e-01 -2.2773 0.4389 37
#>
#> Multiple R-squared: 0.06496 , Adjusted R-squared: 0.01442
#> F-statistic: 1.739 on 2 and 37 DF, p-value: 0.1898
summary(lhro$lh)
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> z + 2x = 0 -0.1952 0.9849 -0.1982 0.844 -2.191 1.8 37