Absorbing Fixed Effects with estimatr
Source:vignettes/absorbing-fixed-effects.Rmd
absorbing-fixed-effects.RmdWhether analyzing a block-randomized experiment or adding fixed
effects for a panel model, absorbing group means can speed up estimation
time. The fixed_effects argument in both
lm_robust and iv_robust allows you to do just
that, although the speed gains are greatest with “HC1” standard errors.
Specifying fixed effects is really simple.
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## hp -0.02403883 0.01503818 -1.598521 0.1211523 -0.05484314 0.006765475 28
lmr_out$fixed_effects## cyl4 cyl6 cyl8
## 28.65012 22.68246 20.12927
Before proceeding, three quick notes:
- Most of the speed gains occur when estimating “HC1” robust standard errors, or “stata” standard errors when there is clustering. This is because most of the speed gains come from avoiding inverting a large matrix of group dummies, but this step is still necessary for “HC2”, “HC3”, and “CR2” standard errors.
- While you can specify multiple sets of fixed effects, such as
fixed_effects = ~ year + country, please ensure that your model is well-specified if you do so. If there are dependencies or overlapping groups across multiple sets of fixed effects, we cannot guarantee the correct degrees of freedom. - For now, weighted “CR2” estimation is not possible with fixed_effects.
Speed gains
In general, our speed gains will be greatest as the number of groups/fixed effects is large relative to the number of observations. Imagine we have 300 matched-pairs in an experiment.
# Load packages for comparison
library(microbenchmark)
library(sandwich)
library(lmtest)
# Create matched-pairs dataset using fabricatr
set.seed(40)
library(fabricatr)
dat <- fabricate(
blocks = add_level(N = 300),
indiv = add_level(N = 2, z = sample(0:1), y = rnorm(N) + z)
)
head(dat)## blocks indiv z y
## 1 001 001 1 1.4961828
## 2 001 002 0 -0.8595843
## 3 002 003 1 0.1709400
## 4 002 004 0 -0.3215731
## 5 003 005 1 -0.3037704
## 6 003 006 0 -1.4214866
# With HC2
microbenchmark(
`base + sandwich` = {
lo <- lm(y ~ z + factor(blocks), dat)
coeftest(lo, vcov = vcovHC(lo, type = "HC2"))
},
`lm_robust` = lm_robust(y ~ z + factor(blocks), dat),
`lm_robust + fes` = lm_robust(y ~ z, data = dat, fixed_effects = ~ blocks),
times = 50
)## Warning in microbenchmark(`base + sandwich` = {: less accurate nanosecond times
## to avoid potential integer overflows
## Unit: milliseconds
## expr min lq mean median uq max neval
## base + sandwich 44.45232 51.66775 64.29747 59.02126 64.61485 187.3890 50
## lm_robust 35.39399 42.52073 52.60921 46.94432 53.48803 192.9741 50
## lm_robust + fes 26.38633 33.62980 44.69569 37.20440 45.16560 182.4015 50
## cld
## a
## ab
## b
Speed gains are considerably greater with HC1 standard errors. This is because we need to get the hat matrix for HC2, HC3, and CR2 standard errors, which requires inverting that large matrix of dummies we previously avoided doing. HC0, HC1, CR0, and CRstata standard errors do not require this inversion.
# With HC1
microbenchmark(
`base + sandwich` = {
lo <- lm(y ~ z + factor(blocks), dat)
coeftest(lo, vcov = vcovHC(lo, type = "HC1"))
},
`lm_robust` = lm_robust(
y ~ z + factor(blocks),
dat,
se_type = "HC1"
),
`lm_robust + fes` = lm_robust(
y ~ z,
data = dat,
fixed_effects = ~ blocks,
se_type = "HC1"
),
times = 50
)## Unit: milliseconds
## expr min lq mean median uq max
## base + sandwich 42.634834 46.824419 58.58902 52.384654 60.271886 194.23102
## lm_robust 26.740159 30.020569 34.42681 33.322135 37.329598 68.34811
## lm_robust + fes 3.581063 3.994876 11.12623 5.043164 7.281354 127.28110
## neval cld
## 50 a
## 50 b
## 50 c