Absorbing Fixed Effects with estimatr
Source:vignettes/absorbing-fixed-effects.Rmd
absorbing-fixed-effects.Rmd
Whether analyzing a block-randomized experiment or adding fixed
effects for a panel model, absorbing group means can speed up estimation
time. The fixed_effects
argument in both
lm_robust
and iv_robust
allows you to do just
that, although the speed gains are greatest with “HC1” standard errors.
Specifying fixed effects is really simple.
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## hp -0.02403883 0.01503818 -1.598521 0.1211523 -0.05484314 0.006765475 28
lmr_out$fixed_effects
## cyl4 cyl6 cyl8
## 28.65012 22.68246 20.12927
Before proceeding, three quick notes:
- Most of the speed gains occur when estimating “HC1” robust standard errors, or “stata” standard errors when there is clustering. This is because most of the speed gains come from avoiding inverting a large matrix of group dummies, but this step is still necessary for “HC2”, “HC3”, and “CR2” standard errors.
- While you can specify multiple sets of fixed effects, such as
fixed_effects = ~ year + country
, please ensure that your model is well-specified if you do so. If there are dependencies or overlapping groups across multiple sets of fixed effects, we cannot guarantee the correct degrees of freedom. - For now, weighted “CR2” estimation is not possible with fixed_effects.
Speed gains
In general, our speed gains will be greatest as the number of groups/fixed effects is large relative to the number of observations. Imagine we have 300 matched-pairs in an experiment.
# Load packages for comparison
library(microbenchmark)
library(sandwich)
library(lmtest)
# Create matched-pairs dataset using fabricatr
set.seed(40)
library(fabricatr)
dat <- fabricate(
blocks = add_level(N = 300),
indiv = add_level(N = 2, z = sample(0:1), y = rnorm(N) + z)
)
head(dat)
## blocks indiv z y
## 1 001 001 1 1.4961828
## 2 001 002 0 -0.8595843
## 3 002 003 1 0.1709400
## 4 002 004 0 -0.3215731
## 5 003 005 1 -0.3037704
## 6 003 006 0 -1.4214866
# With HC2
microbenchmark(
`base + sandwich` = {
lo <- lm(y ~ z + factor(blocks), dat)
coeftest(lo, vcov = vcovHC(lo, type = "HC2"))
},
`lm_robust` = lm_robust(y ~ z + factor(blocks), dat),
`lm_robust + fes` = lm_robust(y ~ z, data = dat, fixed_effects = ~ blocks),
times = 50
)
## Warning in microbenchmark(`base + sandwich` = {: less accurate nanosecond times
## to avoid potential integer overflows
## Unit: milliseconds
## expr min lq mean median uq max
## base + sandwich 165.52897 186.09777 209.02422 199.85091 219.26570 351.7351
## lm_robust 40.41768 45.00763 56.29082 51.68759 61.86949 173.7033
## lm_robust + fes 25.81299 28.54510 41.11651 33.58814 41.13637 128.7707
## neval cld
## 50 a
## 50 b
## 50 c
Speed gains are considerably greater with HC1 standard errors. This is because we need to get the hat matrix for HC2, HC3, and CR2 standard errors, which requires inverting that large matrix of dummies we previously avoided doing. HC0, HC1, CR0, and CRstata standard errors do not require this inversion.
# With HC1
microbenchmark(
`base + sandwich` = {
lo <- lm(y ~ z + factor(blocks), dat)
coeftest(lo, vcov = vcovHC(lo, type = "HC1"))
},
`lm_robust` = lm_robust(
y ~ z + factor(blocks),
dat,
se_type = "HC1"
),
`lm_robust + fes` = lm_robust(
y ~ z,
data = dat,
fixed_effects = ~ blocks,
se_type = "HC1"
),
times = 50
)
## Unit: milliseconds
## expr min lq mean median uq
## base + sandwich 164.024969 178.468490 197.466440 189.169408 207.445199
## lm_robust 31.955646 35.026341 50.093809 39.747799 52.359460
## lm_robust + fes 3.317187 3.612838 7.177763 4.036102 6.064433
## max neval cld
## 308.26133 50 a
## 307.98634 50 b
## 91.85788 50 c