Builds condition probability matrices for Horvitz-Thompson estimation from permutation matrix
Source:R/helper_condition_pr_matrix.R
permutations_to_condition_pr_mat.Rd
Builds condition probability matrices for Horvitz-Thompson estimation from permutation matrix
Arguments
- permutations
A matrix where the rows are units and the columns are different treatment permutations; treated units must be represented with a 1 and control units with a 0
Value
a numeric 2n*2n matrix of marginal and joint condition treatment
probabilities to be passed to the condition_pr_mat
argument of
horvitz_thompson
.
Details
This function takes a matrix of permutations, for example from
the obtain_permutation_matrix
function in
randomizr or through simulation and returns a 2n*2n matrix that can
be used to fully specify the design for horvitz_thompson
estimation. You can read more about these matrices in the documentation for
the declaration_to_condition_pr_mat
function.
This is done by passing this matrix to the condition_pr_mat
argument
of
Examples
# Complete randomization
perms <- replicate(1000, sample(rep(0:1, each = 50)))
comp_pr_mat <- permutations_to_condition_pr_mat(perms)
# Arbitrary randomization
possible_treats <- cbind(
c(1, 1, 0, 1, 0, 0, 0, 1, 1, 0),
c(0, 1, 1, 0, 1, 1, 0, 1, 0, 1),
c(1, 0, 1, 1, 1, 1, 1, 0, 0, 0)
)
arb_pr_mat <- permutations_to_condition_pr_mat(possible_treats)
# Simulating a column to be realized treatment
z <- possible_treats[, sample(ncol(possible_treats), size = 1)]
y <- rnorm(nrow(possible_treats))
horvitz_thompson(y ~ z, condition_pr_mat = arb_pr_mat)
#> Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
#> z 0.2434772 0.6767714 0.3597629 0.7190245 -1.08297 1.569925 NA