Build lm_robust object from lm fit
commarobust(model, se_type = NULL, clusters = NULL, ci = TRUE, alpha = 0.05)
an lm model object
The sort of standard error sought. If clusters
is
not specified the options are "HC0", "HC1" (or "stata", the equivalent),
"HC2" (default), "HC3", or "classical". If clusters
is specified the
options are "CR0", "CR2" (default), or "stata". Can also specify "none",
which may speed up estimation of the coefficients.
A vector corresponding to the clusters in the data.
logical. Whether to compute and return p-values and confidence intervals, TRUE by default.
The significance level, 0.05 by default.
an lm_robust
object.
lmo <- lm(mpg ~ hp, data = mtcars)
# Default HC2
commarobust(lmo)
#> Estimate Std. Error t value Pr(>|t|) CI Lower
#> (Intercept) 30.09886054 2.19301194 13.724896 1.81366e-14 25.62013267
#> hp -0.06822828 0.01471473 -4.636732 6.48546e-05 -0.09827977
#> CI Upper DF
#> (Intercept) 34.57758841 30
#> hp -0.03817678 30
commarobust(lmo, se_type = "HC3")
#> Estimate Std. Error t value Pr(>|t|) CI Lower
#> (Intercept) 30.09886054 2.41006671 12.488808 2.044330e-13 25.1768477
#> hp -0.06822828 0.01660193 -4.109659 2.822529e-04 -0.1021339
#> CI Upper DF
#> (Intercept) 35.02087341 30
#> hp -0.03432261 30
commarobust(lmo, se_type = "stata", clusters = mtcars$carb)
#> Estimate Std. Error t value Pr(>|t|) CI Lower
#> (Intercept) 30.09886054 2.15609050 13.959924 3.390807e-05 24.5564535
#> hp -0.06822828 0.01404901 -4.856449 4.647551e-03 -0.1043424
#> CI Upper DF
#> (Intercept) 35.64126761 5
#> hp -0.03211416 5