Build lm_robust object from lm fit
Arguments
- model
 an lm model object
- se_type
 The sort of standard error sought. If
clustersis not specified the options are "HC0", "HC1" (or "stata", the equivalent), "HC2" (default), "HC3", or "classical". Ifclustersis specified the options are "CR0", "CR2" (default), or "stata". Can also specify "none", which may speed up estimation of the coefficients.- clusters
 A vector corresponding to the clusters in the data.
- ci
 logical. Whether to compute and return p-values and confidence intervals, TRUE by default.
- alpha
 The significance level, 0.05 by default.
Value
an lm_robust object.
Examples
lmo <- lm(mpg ~ hp, data = mtcars)
# Default HC2
commarobust(lmo)
#>                Estimate Std. Error   t value    Pr(>|t|)    CI Lower
#> (Intercept) 30.09886054 2.19301194 13.724896 1.81366e-14 25.62013267
#> hp          -0.06822828 0.01471473 -4.636732 6.48546e-05 -0.09827977
#>                CI Upper DF
#> (Intercept) 34.57758841 30
#> hp          -0.03817678 30
commarobust(lmo, se_type = "HC3")
#>                Estimate Std. Error   t value     Pr(>|t|)   CI Lower
#> (Intercept) 30.09886054 2.41006671 12.488808 2.044330e-13 25.1768477
#> hp          -0.06822828 0.01660193 -4.109659 2.822529e-04 -0.1021339
#>                CI Upper DF
#> (Intercept) 35.02087341 30
#> hp          -0.03432261 30
commarobust(lmo, se_type = "stata", clusters = mtcars$carb)
#>                Estimate Std. Error   t value     Pr(>|t|)   CI Lower
#> (Intercept) 30.09886054 2.15609050 13.959924 3.390807e-05 24.5564535
#> hp          -0.06822828 0.01404901 -4.856449 4.647551e-03 -0.1043424
#>                CI Upper DF
#> (Intercept) 35.64126761  5
#> hp          -0.03211416  5