Get estimates, inquiries, assignment vectors, or samples from a design given data
Source:R/get_functions.R
get_functions.Rd
Get estimates, inquiries, assignment vectors, or samples from a design given data
Usage
get_estimates(design, data = NULL, start = 1, end = length(design))
Arguments
- design
A design object, typically created using the + operator
- data
A data.frame object with sufficient information to get the data, estimates, inquiries, an assignment vector, or a sample.
- start
(Defaults to 1) a scalar indicating which step in the design to begin with. By default all data steps are drawn, from step 1 to the last step of the design.
- end
(Defaults to
length(design)
) a scalar indicating which step in the design to finish with.
Examples
design <-
declare_model(
N = 100,
U = rnorm(N),
potential_outcomes(Y ~ Z + U)
) +
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
declare_sampling(S = complete_rs(N, n = 75)) +
declare_assignment(Z = complete_ra(N, m = 50)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, inquiry = "ATE")
dat <- draw_data(design)
draw_data(design, data = dat, start = 2)
#> ID U Y_Z_0 Y_Z_1 S Z Y
#> 1 001 -0.120003505 -0.120003505 0.87999649 1 0 -0.12000351
#> 2 002 1.395008391 1.395008391 2.39500839 1 0 1.39500839
#> 3 003 -0.499316907 -0.499316907 0.50068309 1 1 0.50068309
#> 4 004 3.208459197 3.208459197 4.20845920 1 1 4.20845920
#> 5 007 -0.556071372 -0.556071372 0.44392863 1 1 0.44392863
#> 6 008 0.494066167 0.494066167 1.49406617 1 1 1.49406617
#> 7 009 0.287289687 0.287289687 1.28728969 1 0 0.28728969
#> 8 010 0.032472018 0.032472018 1.03247202 1 0 0.03247202
#> 9 012 -0.581642588 -0.581642588 0.41835741 1 1 0.41835741
#> 10 013 0.711623077 0.711623077 1.71162308 1 1 1.71162308
#> 11 014 -0.904759184 -0.904759184 0.09524082 1 1 0.09524082
#> 12 015 -0.257546579 -0.257546579 0.74245342 1 1 0.74245342
#> 13 016 -1.476130766 -1.476130766 -0.47613077 1 0 -1.47613077
#> 14 017 1.019658251 1.019658251 2.01965825 1 1 2.01965825
#> 15 019 0.588553405 0.588553405 1.58855341 1 0 0.58855341
#> 16 020 0.975705502 0.975705502 1.97570550 1 0 0.97570550
#> 17 022 0.879515871 0.879515871 1.87951587 1 0 0.87951587
#> 18 025 0.255588781 0.255588781 1.25558878 1 1 1.25558878
#> 19 026 -0.622418529 -0.622418529 0.37758147 1 1 0.37758147
#> 20 027 0.352437504 0.352437504 1.35243750 1 0 0.35243750
#> 21 028 2.088369839 2.088369839 3.08836984 1 1 3.08836984
#> 22 029 0.129024612 0.129024612 1.12902461 1 1 1.12902461
#> 23 031 -0.016523057 -0.016523057 0.98347694 1 1 0.98347694
#> 24 032 1.034356278 1.034356278 2.03435628 1 0 1.03435628
#> 25 033 -0.729137994 -0.729137994 0.27086201 1 1 0.27086201
#> 26 034 -0.029048094 -0.029048094 0.97095191 1 0 -0.02904809
#> 27 036 -0.389889943 -0.389889943 0.61011006 1 1 0.61011006
#> 28 037 0.117133769 0.117133769 1.11713377 1 1 1.11713377
#> 29 038 -0.487347576 -0.487347576 0.51265242 1 1 0.51265242
#> 30 039 0.454523043 0.454523043 1.45452304 1 1 1.45452304
#> 31 040 0.470199698 0.470199698 1.47019970 1 1 1.47019970
#> 32 041 -0.435200491 -0.435200491 0.56479951 1 0 -0.43520049
#> 33 042 1.224618991 1.224618991 2.22461899 1 1 2.22461899
#> 34 043 -0.358041654 -0.358041654 0.64195835 1 0 -0.35804165
#> 35 044 -0.089466258 -0.089466258 0.91053374 1 1 0.91053374
#> 36 045 -0.054874909 -0.054874909 0.94512509 1 1 0.94512509
#> 37 046 0.179801431 0.179801431 1.17980143 1 1 1.17980143
#> 38 047 -0.290165586 -0.290165586 0.70983441 1 1 0.70983441
#> 39 048 1.066339413 1.066339413 2.06633941 1 1 2.06633941
#> 40 049 -1.643981009 -1.643981009 -0.64398101 1 1 -0.64398101
#> 41 050 0.930799162 0.930799162 1.93079916 1 1 1.93079916
#> 42 055 -1.057700644 -1.057700644 -0.05770064 1 1 -0.05770064
#> 43 056 0.410267318 0.410267318 1.41026732 1 1 1.41026732
#> 44 057 0.049820897 0.049820897 1.04982090 1 1 1.04982090
#> 45 058 -1.293853009 -1.293853009 -0.29385301 1 1 -0.29385301
#> 46 059 -0.002055775 -0.002055775 0.99794422 1 1 0.99794422
#> 47 060 -1.075758967 -1.075758967 -0.07575897 1 0 -1.07575897
#> 48 061 -0.767654899 -0.767654899 0.23234510 1 1 0.23234510
#> 49 065 1.454138213 1.454138213 2.45413821 1 1 2.45413821
#> 50 066 1.263068966 1.263068966 2.26306897 1 0 1.26306897
#> 51 067 0.365938700 0.365938700 1.36593870 1 1 1.36593870
#> 52 068 -0.246704524 -0.246704524 0.75329548 1 0 -0.24670452
#> 53 069 0.418697410 0.418697410 1.41869741 1 1 1.41869741
#> 54 070 0.714488065 0.714488065 1.71448807 1 0 0.71448807
#> 55 071 0.504745012 0.504745012 1.50474501 1 1 1.50474501
#> 56 072 -0.592150088 -0.592150088 0.40784991 1 1 0.40784991
#> 57 074 0.514515680 0.514515680 1.51451568 1 0 0.51451568
#> 58 075 0.179091258 0.179091258 1.17909126 1 1 1.17909126
#> 59 076 0.532944188 0.532944188 1.53294419 1 0 0.53294419
#> 60 077 0.761457683 0.761457683 1.76145768 1 1 1.76145768
#> 61 078 -0.091102004 -0.091102004 0.90889800 1 0 -0.09110200
#> 62 079 0.674661541 0.674661541 1.67466154 1 0 0.67466154
#> 63 080 1.854759926 1.854759926 2.85475993 1 0 1.85475993
#> 64 082 -0.284921515 -0.284921515 0.71507849 1 0 -0.28492151
#> 65 083 -1.570667343 -1.570667343 -0.57066734 1 1 -0.57066734
#> 66 084 -0.309283049 -0.309283049 0.69071695 1 1 0.69071695
#> 67 085 0.489510274 0.489510274 1.48951027 1 1 1.48951027
#> 68 086 -0.475816241 -0.475816241 0.52418376 1 1 0.52418376
#> 69 087 0.098768642 0.098768642 1.09876864 1 1 1.09876864
#> 70 090 -0.396678429 -0.396678429 0.60332157 1 0 -0.39667843
#> 71 092 -0.745559818 -0.745559818 0.25444018 1 1 0.25444018
#> 72 096 -3.493515322 -3.493515322 -2.49351532 1 1 -2.49351532
#> 73 097 -0.374073821 -0.374073821 0.62592618 1 1 0.62592618
#> 74 098 -0.474357385 -0.474357385 0.52564262 1 1 0.52564262
#> 75 099 0.054682715 0.054682715 1.05468271 1 0 0.05468271
get_estimates(design, data = dat)
#> estimator term estimate std.error statistic p.value conf.low conf.high
#> 1 estimator Z 1.108226 0.2077582 5.334209 1.031719e-06 0.6941642 1.522287
#> df outcome inquiry
#> 1 73 Y ATE