Skip to contents

Whether analyzing a block-randomized experiment or adding fixed effects for a panel model, absorbing group means can speed up estimation time. The fixed_effects argument in both lm_robust and iv_robust allows you to do just that, although the speed gains are greatest with “HC1” standard errors. Specifying fixed effects is really simple.

library(estimatr)
lmr_out <- lm_robust(mpg ~ hp, data = mtcars, fixed_effects = ~ cyl)
lmr_out
##       Estimate Std. Error   t value  Pr(>|t|)    CI Lower    CI Upper DF
## hp -0.02403883 0.01503818 -1.598521 0.1211523 -0.05484314 0.006765475 28
lmr_out$fixed_effects
##     cyl4     cyl6     cyl8 
## 28.65012 22.68246 20.12927

Before proceeding, three quick notes:

  • Most of the speed gains occur when estimating “HC1” robust standard errors, or “stata” standard errors when there is clustering. This is because most of the speed gains come from avoiding inverting a large matrix of group dummies, but this step is still necessary for “HC2”, “HC3”, and “CR2” standard errors.
  • While you can specify multiple sets of fixed effects, such as fixed_effects = ~ year + country, please ensure that your model is well-specified if you do so. If there are dependencies or overlapping groups across multiple sets of fixed effects, we cannot guarantee the correct degrees of freedom.
  • For now, weighted “CR2” estimation is not possible with fixed_effects.

Speed gains

In general, our speed gains will be greatest as the number of groups/fixed effects is large relative to the number of observations. Imagine we have 300 matched-pairs in an experiment.

# Load packages for comparison
library(microbenchmark)
library(sandwich)
library(lmtest)

# Create matched-pairs dataset using fabricatr
set.seed(40)
library(fabricatr)
dat <- fabricate(
  blocks = add_level(N = 300),
  indiv = add_level(N = 2, z = sample(0:1), y = rnorm(N) + z)
)
head(dat)
##   blocks indiv z          y
## 1    001   001 1  1.4961828
## 2    001   002 0 -0.8595843
## 3    002   003 1  0.1709400
## 4    002   004 0 -0.3215731
## 5    003   005 1 -0.3037704
## 6    003   006 0 -1.4214866
# With HC2
microbenchmark(
  `base + sandwich` = {
    lo <- lm(y ~ z + factor(blocks), dat)
    coeftest(lo, vcov = vcovHC(lo, type = "HC2"))
  },
  `lm_robust` = lm_robust(y ~ z + factor(blocks), dat),
  `lm_robust + fes` = lm_robust(y ~ z, data = dat, fixed_effects = ~ blocks),
  times = 50
)
## Warning in microbenchmark(`base + sandwich` = {: less accurate nanosecond times
## to avoid potential integer overflows
## Unit: milliseconds
##             expr       min        lq      mean    median        uq      max
##  base + sandwich 142.03691 157.88407 171.16972 162.25246 175.64006 244.8040
##        lm_robust  35.54122  39.03266  42.37252  41.02698  42.71175 107.7263
##  lm_robust + fes  22.17616  24.46306  31.32867  25.45579  27.66996 113.1051
##  neval cld
##     50 a  
##     50  b 
##     50   c

Speed gains are considerably greater with HC1 standard errors. This is because we need to get the hat matrix for HC2, HC3, and CR2 standard errors, which requires inverting that large matrix of dummies we previously avoided doing. HC0, HC1, CR0, and CRstata standard errors do not require this inversion.

# With HC1
microbenchmark(
  `base + sandwich` = {
    lo <- lm(y ~ z + factor(blocks), dat)
    coeftest(lo, vcov = vcovHC(lo, type = "HC1"))
  },
  `lm_robust` = lm_robust(
    y ~ z + factor(blocks),
    dat,
    se_type = "HC1"
  ),
  `lm_robust + fes` = lm_robust(
    y ~ z, 
    data = dat,
    fixed_effects = ~ blocks,
    se_type = "HC1"
  ),
  times = 50
)
## Unit: milliseconds
##             expr        min         lq       mean     median         uq
##  base + sandwich 142.730348 147.067000 165.875783 158.046164 175.012231
##        lm_robust  28.341988  31.172669  38.683181  32.610129  37.117382
##  lm_robust + fes   2.645074   3.019445   6.034705   3.432171   4.118409
##        max neval cld
##  253.35138    50 a  
##   93.03585    50  b 
##   86.35469    50   c