Skip to contents

Whether analyzing a block-randomized experiment or adding fixed effects for a panel model, absorbing group means can speed up estimation time. The fixed_effects argument in both lm_robust and iv_robust allows you to do just that, although the speed gains are greatest with “HC1” standard errors. Specifying fixed effects is really simple.

library(estimatr)
lmr_out <- lm_robust(mpg ~ hp, data = mtcars, fixed_effects = ~ cyl)
lmr_out
##       Estimate Std. Error   t value  Pr(>|t|)    CI Lower    CI Upper DF
## hp -0.02403883 0.01503818 -1.598521 0.1211523 -0.05484314 0.006765475 28
lmr_out$fixed_effects
##     cyl4     cyl6     cyl8 
## 28.65012 22.68246 20.12927

Before proceeding, three quick notes:

  • Most of the speed gains occur when estimating “HC1” robust standard errors, or “stata” standard errors when there is clustering. This is because most of the speed gains come from avoiding inverting a large matrix of group dummies, but this step is still necessary for “HC2”, “HC3”, and “CR2” standard errors.
  • While you can specify multiple sets of fixed effects, such as fixed_effects = ~ year + country, please ensure that your model is well-specified if you do so. If there are dependencies or overlapping groups across multiple sets of fixed effects, we cannot guarantee the correct degrees of freedom.
  • For now, weighted “CR2” estimation is not possible with fixed_effects.

Speed gains

In general, our speed gains will be greatest as the number of groups/fixed effects is large relative to the number of observations. Imagine we have 300 matched-pairs in an experiment.

# Load packages for comparison
library(microbenchmark)
library(sandwich)
library(lmtest)

# Create matched-pairs dataset using fabricatr
set.seed(40)
library(fabricatr)
dat <- fabricate(
  blocks = add_level(N = 300),
  indiv = add_level(N = 2, z = sample(0:1), y = rnorm(N) + z)
)
head(dat)
##   blocks indiv z          y
## 1    001   001 1  1.4961828
## 2    001   002 0 -0.8595843
## 3    002   003 1  0.1709400
## 4    002   004 0 -0.3215731
## 5    003   005 1 -0.3037704
## 6    003   006 0 -1.4214866
# With HC2
microbenchmark(
  `base + sandwich` = {
    lo <- lm(y ~ z + factor(blocks), dat)
    coeftest(lo, vcov = vcovHC(lo, type = "HC2"))
  },
  `lm_robust` = lm_robust(y ~ z + factor(blocks), dat),
  `lm_robust + fes` = lm_robust(y ~ z, data = dat, fixed_effects = ~ blocks),
  times = 50
)
## Unit: milliseconds
##             expr       min        lq      mean    median        uq      max
##  base + sandwich 162.42025 173.14896 199.88786 185.91949 218.77795 298.1180
##        lm_robust  57.62384  61.51658  69.56482  64.32627  69.91889 212.7142
##  lm_robust + fes  33.99339  36.30421  45.14796  39.87886  45.29826 170.3723
##  neval cld
##     50 a  
##     50  b 
##     50   c

Speed gains are considerably greater with HC1 standard errors. This is because we need to get the hat matrix for HC2, HC3, and CR2 standard errors, which requires inverting that large matrix of dummies we previously avoided doing. HC0, HC1, CR0, and CRstata standard errors do not require this inversion.

# With HC1
microbenchmark(
  `base + sandwich` = {
    lo <- lm(y ~ z + factor(blocks), dat)
    coeftest(lo, vcov = vcovHC(lo, type = "HC1"))
  },
  `lm_robust` = lm_robust(
    y ~ z + factor(blocks),
    dat,
    se_type = "HC1"
  ),
  `lm_robust + fes` = lm_robust(
    y ~ z, 
    data = dat,
    fixed_effects = ~ blocks,
    se_type = "HC1"
  ),
  times = 50
)
## Unit: milliseconds
##             expr        min         lq       mean     median         uq
##  base + sandwich 156.554510 163.396602 192.971462 170.099918 193.557637
##        lm_robust  44.861598  48.563945  54.891802  51.549354  55.926128
##  lm_robust + fes   5.428622   6.309839   7.656221   6.701411   7.519047
##        max neval cld
##  498.69713    50 a  
##  172.03318    50  b 
##   24.20023    50   c