Skip to contents

Whether analyzing a block-randomized experiment or adding fixed effects for a panel model, absorbing group means can speed up estimation time. The fixed_effects argument in both lm_robust and iv_robust allows you to do just that, although the speed gains are greatest with “HC1” standard errors. Specifying fixed effects is really simple.

library(estimatr)
lmr_out <- lm_robust(mpg ~ hp, data = mtcars, fixed_effects = ~ cyl)
lmr_out
##       Estimate Std. Error   t value  Pr(>|t|)    CI Lower    CI Upper DF
## hp -0.02403883 0.01503818 -1.598521 0.1211523 -0.05484314 0.006765475 28
lmr_out$fixed_effects
##     cyl4     cyl6     cyl8 
## 28.65012 22.68246 20.12927

Before proceeding, three quick notes:

  • Most of the speed gains occur when estimating “HC1” robust standard errors, or “stata” standard errors when there is clustering. This is because most of the speed gains come from avoiding inverting a large matrix of group dummies, but this step is still necessary for “HC2”, “HC3”, and “CR2” standard errors.
  • While you can specify multiple sets of fixed effects, such as fixed_effects = ~ year + country, please ensure that your model is well-specified if you do so. If there are dependencies or overlapping groups across multiple sets of fixed effects, we cannot guarantee the correct degrees of freedom.
  • For now, weighted “CR2” estimation is not possible with fixed_effects.

Speed gains

In general, our speed gains will be greatest as the number of groups/fixed effects is large relative to the number of observations. Imagine we have 300 matched-pairs in an experiment.

# Load packages for comparison
library(microbenchmark)
library(sandwich)
library(lmtest)

# Create matched-pairs dataset using fabricatr
set.seed(40)
library(fabricatr)
dat <- fabricate(
  blocks = add_level(N = 300),
  indiv = add_level(N = 2, z = sample(0:1), y = rnorm(N) + z)
)
head(dat)
##   blocks indiv z          y
## 1    001   001 1  1.4961828
## 2    001   002 0 -0.8595843
## 3    002   003 1  0.1709400
## 4    002   004 0 -0.3215731
## 5    003   005 1 -0.3037704
## 6    003   006 0 -1.4214866
# With HC2
microbenchmark(
  `base + sandwich` = {
    lo <- lm(y ~ z + factor(blocks), dat)
    coeftest(lo, vcov = vcovHC(lo, type = "HC2"))
  },
  `lm_robust` = lm_robust(y ~ z + factor(blocks), dat),
  `lm_robust + fes` = lm_robust(y ~ z, data = dat, fixed_effects = ~ blocks),
  times = 50
)
## Warning in microbenchmark(`base + sandwich` = {: less accurate nanosecond times
## to avoid potential integer overflows
## Unit: milliseconds
##             expr       min        lq      mean    median       uq       max
##  base + sandwich 142.42498 155.62149 166.52983 161.49822 173.5146 226.66030
##        lm_robust  35.14938  39.22126  44.19486  40.98204  45.7706  98.36946
##  lm_robust + fes  22.54816  25.27707  32.89289  25.66840  27.3780 142.76274
##  neval cld
##     50 a  
##     50  b 
##     50   c

Speed gains are considerably greater with HC1 standard errors. This is because we need to get the hat matrix for HC2, HC3, and CR2 standard errors, which requires inverting that large matrix of dummies we previously avoided doing. HC0, HC1, CR0, and CRstata standard errors do not require this inversion.

# With HC1
microbenchmark(
  `base + sandwich` = {
    lo <- lm(y ~ z + factor(blocks), dat)
    coeftest(lo, vcov = vcovHC(lo, type = "HC1"))
  },
  `lm_robust` = lm_robust(
    y ~ z + factor(blocks),
    dat,
    se_type = "HC1"
  ),
  `lm_robust + fes` = lm_robust(
    y ~ z, 
    data = dat,
    fixed_effects = ~ blocks,
    se_type = "HC1"
  ),
  times = 50
)
## Unit: milliseconds
##             expr        min         lq      mean    median         uq       max
##  base + sandwich 141.541512 146.116825 163.03772 156.34917 169.993175 238.99359
##        lm_robust  28.344571  28.802746  36.10174  30.92218  33.214551 134.84552
##  lm_robust + fes   2.634414   2.870615   4.70792   3.18203   3.498489  66.54767
##  neval cld
##     50 a  
##     50  b 
##     50   c